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Abstract. In many fields of applied physics, the phenomenology of the space–time phenomena
to be understood (in general for prediction purposes) may be described in the following most
simple way: events with random common positive amplitude occur randomly in time according
to a continuous time random walk (CTRW) model; the prerequisite is therefore a statistical model
for both the amplitude and inter-arrival times between events, here assumed mutually independent.
Special attention is paid here to CTRW for which both amplitude and holding time have infinite
mean value (the extreme and rare hypothesis). Such processes and their limiting version arise
in particular as inverses of processes with stationary independent increments of special interest
(chiefly related to the Lévy stable subordinator).

Among other related models, we investigate here some properties of this CTRW in situations
where the occurrence of events is modelled by a discrete inverse-Linnik process which shares the rare
event hypothesis; this class derives (statistically) its importance from its close relationship to many
other meaningful processes such as the Lévy, gamma and Mittag–Leffler ones. Physically, Linnik
and inverse-Linnik processes appear as a recurrent paradigm in relaxation theory of condensed
matter. The limit laws for cumulative Linnik sequences and their time to failure are finally discussed.

1. Introduction

There are many fields of applied physics where the problem is the statistical understanding of
natural phenomena presenting to us as a sequence in time of inherently extremely irregular
data in space: in hydrology, this could be the sequence of water inputs into some river or dam,
in geophysics, it could be the sequence of random releases of earthquake energy. It could also
be the sequence of damages met by the customers of some insurance company in finance, or
the random users’ demands for network or energy resources in telecommunications’ or power
supply management technology.

In this paper, we are interested by a continuous time random walk (CTRW) model for
which such physical phenomena are to be described in the following realistic way: events of
random independent and identically distributed (IID) positive magnitude, occur at random
times, the inter-arrival times of which form an IID sequence: for such sequences, both
instants of occurrence and amplitudes of the events are under concern. Recently there has
been special emphasis in the literature on the possibility that both magnitude and inter-arrival
times’ sequences are heavy-tailed with tail exponents α > 0 and δ > 0 respectively, possibly
smaller than one (the extreme and rare event hypothesis). Such processes endeavour special
statistical properties [16] and are certainly ubiquitous in nature: to take an image borrowed
from climatology, storms in arid regions are reputed to occur rarely but with extreme violence.
Reports on heavy-tailed amplitudes with exponent α = 2

3 < 1 also exist in the context
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of earthquake magnitude data [14, 15, 19, 23], in accordance with the Gutenberg–Richter
theory [12]. The inter-arrival time problem in this context is also investigated in [16, 30].

In this paper, we focus on a particular CTRW model, namely the inverse-Linnik model
for the occurrence of events in time. Our motivations are twofold:

(1) Statistical, as Linnik processes will be shown to embody a large class of statistical
phenomena of interest.

(2) Physical, as Linnik distributions and related ones (such as Mittag–Leffler’s, Lévy’s and
gamma’s) appear as a paradigm in the context of non-Debye relaxation theory in disordered
complex systems (see [20, 21, 35] and the references therein) and in the problems of
anomalous diffusion [17, 21]. Our chief goal is to supply some statistical insight into
these distributions; these (and other) distributions encountered in this paper are all shown
to be intimately twined with scaling Lévy variables.

More precisely, this paper is organized as follows.
In section 2, we recall some known properties of the CTRW model: the basic object

which embodies all statistical informations on CTRW is their Laplace functional which may
be computed from local statistical informations on their initial condition, holding time and
jump-height distributions.

In section 3, we focus on the central notion of the inverse process of an original process.
Special attention is paid here to situations where the original process to be inverted has
stationary independent increments (SII) and non-decreasing sample paths, i.e. is a subordinator.
It turns out that the inverse of such subordinators with SII is also a subordinator in the CTRW
class, reversing the roles played by space and time. To illustrate this point, we first compute
the Laplace functional of the inverse when the original process is a simple compound Poisson
subordinator. When the original process is a Lévy stable subordinator, it may be interpreted
as a limiting compound Poisson process; consequently, the inverse-Lévy subordinator is also
a limiting CTRW whose construction is supplied. Similarly, gamma and inverse-gamma
subordinators can be studied. Finally, composing two subordinators yields a new subordinator;
this observation is exploited to study the CTRW obtained when composing a Lévy with an
inverse-Lévy process. These constructions will prove useful in what follows as they give some
statistical insight into mixed inverse-Lévy distributions.

As we wish to pay special attention to Linnik processes, the whole of section 4 is
devoted to them. It turns out that the statistical properties of the inverse process are similarly
understandable when the original process is a Linnik subordinator with SII, obtained when
composing Lévy and gamma subordinators. Linnik processes are infinitely divisible (ID) (and
even self-decomposable (SD)); they include as particular cases both Mittag–Leffler and Lévy
stable processes. They are strongly connected with the Cole–Cole relaxation function. In
some limiting sense, Linnik subordinators exhibit heavy-tailed amplitude jumps (the extreme
events situation). Conversely, inverse-Linnik subordinators exhibit heavy-tailed holding times
between consecutive jumps (the rare event situation).

A discrete inverse-Linnik process is then introduced. It is obtained when composing
a standard Poisson process with an inverse-Linnik subordinator, independently. It gives an
interesting counting Linnik model relating to the way events occur randomly and rarely in
time.

In section 5, we address the following problem: assume events occur randomly in time
according to a discrete inverse-Linnik model. Suppose some statistical (possibly heavy-tailed)
model for the positive magnitude of such events holds. The cumulative partial sums of such
Linnik sequences are then of physical interest. We thus derive the various asymptotics to be
expected were the magnitude partial sums to be observed from the origin of time and over a



On Linnik’s continuous-time random walks 2633

large period of time t > 0 and exhibit the various time-scaling properties of these variables:
whereas the heavy-tailed magnitude hypothesis tends to accelerate the partial sums growth
with time, heavy-tailed holding times tend to slow this process, with a competition between
the two. Here, the limit distributions of the (rescaled) partial sums are properly and easily
identified as inverse-Lévy and mixed inverse-Lévy distributions as mentioned at the end of
section 3.

In section 6, we also give an answer to the ‘time to failure question for inverse-Linnik
sequences’ which is important in practice: how long should one wait before the first event of
magnitude exceeding some (possibly high) threshold is achieved; it turns out that the exact
distribution is available; the asymptotic behaviour of this variable, properly rescaled, is also
identified as a Mittag–Leffler variable. These constitute important issues in the prediction of
floods, catastrophic earthquakes, ruin or buffer overflows in the examples just mentioned, were
the Linnik model to hold.

2. Renewal processes (CTRW) revisited

We first recall salient facts arising from the modelling of events occurring randomly in
time [6, 10, 31, 32].

2.1. Counting events

Suppose at time t = 0, some event occurs for the first time. Suppose successive events occur
in the future in such a way that the inter-arrival times between consecutive events form an IID

sequence (τm,m � 1) with common distribution τm
d= τ ,m � 1. The inter-arrival time τ is

assumed to have a density function, say fτ (t).
We are then left with a sequence of events occurring at times

T0 = 0 Tn :=
n∑

m=1

τm n � 1. (1)

Let N(t), t � 0, count the random number of events which occurred in the time interval
[0, t]. Clearly,

N(t) =
∑
n�0

1(Tn � t) (2)

with 1(.) the set indicator function which takes the value one if the event is realized, zero,
otherwise.

As a result, an essential feature of such processes is that the events ‘N(t) > n’ and ‘Tn � t’
coincide.

Such random processes are called pure counting renewal processes (the adjective pure is
relative to the hypothesis which has been made that the origin of time is an instant at which
some event occurred; if this not the case, the adjective delayed is currently employed and
the first event occurs at time T0 := τ 0 > 0, independent of (τm,m � 1) but not necessarily
with the same distribution). If in addition

∫ +∞
0 fτ (s) ds = 1 (τ is ‘proper’) such renewal

processes are said to be recurrent; this has to be opposed to transient renewal processes for
which

∫ +∞
0 fτ (t) dt < 1, corresponding to ‘defective’ τ , allowing for a finite probability that

the first event never occurs, i.e. occurs at time t = +∞. We shall avoid delayed and transient
processes in what follows and limit ourselves to pure and recurrent ones. However, among
recurrent processes, we shall distinguish between positive recurrent processes for which the
average renewal time 〈τ 〉 := θ < +∞ and null recurrent for which 〈τ 〉 = +∞.
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If 〈τ 〉 = +∞, we shall limit ourselves to situations where this occurs as a result of ‘heavy-
tailedness’ of the inter-arrival time with tail distribution Pr(τ > t) ∼ cδt

−δ , as t ↑ +∞, with
δ ∈ (0, 1). Here, cδ > 0 is a scale factor for τ . In other words cδ = t δ0 for some t0 > 0 fixing
the timescale itself.

We note that if the inter-arrival times (τm,m � 1) are exponentially distributed, this
counting process boils down to the familiar Poisson process.

We shall call �(t) := 〈N(t)〉, t � 0, the intensity of the pure renewal process and
λ(t) := d�(t)/dt its rate (i.e. the instantaneous ‘frequency’ at which events occur at time t);
the function �(t)/t is called the frequency of the phenomenon.

It follows from (2) that

�(t) = 1(t � 0) +
∑
n�1

∫ t

0
f ∗n

τ (s) ds (3)

λ(t) = δ(t = 0) +
∑
n�1

f ∗n
τ (s) ds (4)

where f ∗n
τ is the n-fold convolution of fτ (i.e. is the density of Tn), 1(t � 0) the Heavyside

step function, δ(t = 0) the Dirac delta function at t = 0.
If we let �̂(p) := ∫ +∞

0 e−pt�(t) dt , λ̂(p) := ∫ +∞
0 e−ptλ(t) dt and f̂τ (p) :=∫ +∞

0 e−ptfτ (t) dt stand for the Laplace transforms of �(t), λ(t) and fτ (t), respectively, the
last two equations yield

�̂(p) = 1

p(1 − f̂τ (p))
and λ̂(p) = 1

1 − f̂τ (p)
(5)

underlining the connection between probability theory and physical rate processes. This
suggests the following remark: in many applications the distribution of the renewal time τ is
unknown or too complicated to determine or imagine; however, the intensity function�(t)may
sometimes be easily obtained from the data. From (5), the Laplace time transform of τ may
be conversely computed from the one �̂(p) of the intensity and is f̂τ (p) = 1 − 1/(p�̂(p)).

As p tends to zero, we get some information on the way the intensity and rate functions
behave for large times [10]. These are strongly connected to the tail distribution of the variable
τ and we have to distinguish between two cases.

(1) θ < +∞. In this case, f̂τ (p) ∼ 1 − θp, as p ↓ 0. Hence, �̂(p) ∼ 1/(θp2) and
λ̂(p) ∼ 1/(θp), as p ↓ 0. This means �(t) ∼ t/θ and λ(t) ∼ 1/θ as t ↑ +∞. For
recurrent positive processes, the rate function tends to 1/θ as time drifts to infinity.

(2) θ = +∞. In this case, i.e. for recurrent null processes, the rate function tends to zero: this
is a ‘rare event’ hypothesis, as the expected time between consecutive events is infinite.

For example, if time τ is such that Pr(τ > t) ∼ cδt
−δ , as t ↑ +∞, with δ ∈ (0, 1), cδ > 0,

in such a way that θ = +∞, then f̂τ (p) ∼ 1 − cδp
δ , as p ↓ 0. Hence, �̂(p) ∼ 1/(cδpδ+1)

and λ̂(p) ∼ 1/(cδpδ), as p ↓ 0. This means �(t) ∼ t δ/cδ and λ(t) ∼ t δ−1/cδ as t ↑ +∞: the
intensity goes to infinity slower than t and the rate function tends to zero algebraically. As time
goes to infinity, the events get sparser and sparser, owing to the infinite average hypothesis of
the inter-arrival times.

2.2. Cumulating magnitude

The processN(t) counts the number of events which occurred before time t : each time an event
occurs, the counter is incremented by unity. Assume now some physical phenomenon to be
described by a compound renewal process: events of random IID magnitude, say (χm,m � 1),
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occur at random times Tn, n � 1, the inter-arrival times of which form an IID sequence.
This model was introduced in physics in [27], and its properties are extensively examined
in the context of CTRW models, including the rareness hypothesis, [22, 34], in the fractal
time random walk (FTRW) model. One may be interested by a process which cumulates this
random number of random amplitudes. A compound renewal process is to the counting renewal
process what a compound Poisson process is to a Poisson process itself. Physical situations
where the relevance of this model holds are numerous: think of the random magnitude as a
claims’ sequence in insurance risk theory, as the energy release of individual earthquakes in
geophysics or as random water inputs flowing into a dam in hydrology. Summing the individual
contributions yields the total claim amount (cumulative energy release and water input) over
a certain laps of time. In all these applications we have in mind, the magnitude χ is a positive
random variable; we shall therefore only deal with this case in what follows. As a result the
Laplace–Stieltjes transform of the magnitude distributions will be employed rather than the
Fourier transform which is adapted to real-valued amplitudes sequences not dealt with here.
We shall assume that the random local magnitude χ admits a density function, say fχ(x).

Partitioning over the first steps of the walk, the cumulative magnitude X(t) may be defined
in distribution by

X(t)
d= χ0 · 1(τ > t) + (χ(τ ) + X(t − τ )) · 1(τ � t) (6)

where τ > 0 is a ‘proper’ positive random variable known as the first renewal time of X(t).
Such processes are called compound pure recurrent renewal processes.

Let us briefly comment this identity distribution. At time τ , X(t) undergoes a first
(random) jump with amplitude χ(τ ) > 0, possibly dependent on the occurrence time τ

of this jump. Now, fix time t at which X(t) is to be evaluated. If the realization of time τ

exceeds the time t of interest, the process X(t) is in the initial state, say χ0. If τ = s � t ,
the value of X(t) is the independent sum of the first jump of amplitude χ(s) plus a statistical
copy of the process X(.) in the remaining time t − s, conditionally to the event τ = s. This is
a reasonable way to see a renewal process, as a statistical copy of itself after the first renewal
time; it generalizes the familiar compound Poisson process family in that the inter-arrival time
distributions between spikes is an IID sequence but not necessarily exponentially distributed.
From this model, it is clear that X(t) = χ0 +

∑N(t)
m=1 χm, where (χm,m � 1) is the IID random

magnitude’ sequence.
Let us now translate the definition (6) in terms of the evolution of the Laplace transform

of X(t). Let

�X(t, λ) := 〈e−λX(t)〉 and f̂χ(s, λ) := 〈e−λχ(s)〉 (7)

respectively stand for the Laplace transforms of the cumulative process X(t) and of a local
magnitude χ(s) which occurred at time s � t .

Upon conditioning with respect to the various possible realizations of τ , equation (6)
yields an integral evolution equation for the density of X(t), which, in terms of 〈e−λX(t)〉,
reads

�X(t, λ) = f̂χ0
(λ)Pr(τ > t) +

∫ t

0
�X(t − s, λ)f̂χ(s, λ)fτ (s) ds (8)

where f̂χ0
(λ) := 〈exp −λχ0〉.

We shall now make an additional simplifying hypothesis.
Assume that the local magnitude are independent of their occurrence time (the decoupling

hypothesis in the CTRW model); then f̂χ(s, λ) = f̂χ(λ) and the Laplace transform of the
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conditional magnitude χ is independent of the particular realization s of its occurrence time
τ . Then (8) reduces to

�X(t, λ) = f̂χ0
(λ)Pr(τ > t) + f̂χ(λ)

∫ t

0
�X(t − s, λ)fτ (s) ds. (9)

This is the simpler convolution integral equation which�X(t, λ)now satisfies. Introducing
the Laplace transforms

�̂X(p, λ) :=
∫ +∞

0
e−pt�X(t, λ) dt and f̂τ (p) := 〈e−pτ 〉 (10)

respectively of �X(., λ) and fτ (.), (9) yields

�̂X(p, λ) = (1 − f̂τ (p))f̂χ0
(λ)

p(1 − f̂τ (p)f̂χ(λ))
(11)

provided f̂τ (p)f̂χ(λ) < 1.
We shall call �̂X(p, λ) the Laplace functional of the process X(t), t � 0. In addition,

the triptych (f̂χ0
(λ), f̂χ(λ), f̂τ (p)) will be called the space–time characteristics of the process

X(t), t � 0 as they completely determine its law.
Processes whose Laplace functional is given by (11) are known as pure renewal processes

with stationary local magnitude [11], or CTRW. This expression is consistent with similar
results in the lattice case to be found in [13].

Remark 1. Renewal process are more general than standard processes with SII, such as
Poisson, because they are not Markovian as the integral equation (8) shows: the distribution
at time t of X(t) depends (in general) on the distribution of X(s), s < t . However, it can
easily be shown that they include the compound Poisson class (a very important sub-class of
processes with SII) which may be recovered if the renewal time τ is assumed to be exponentially
distributed, because of the memory-less character of the exponential distribution. If T is
exponentially distributed, then f̂τ (p) = 1/(1 + θp) and (11) boils down to

�̂X(p, λ) = θ

pθ + 1 − f̂χ(λ)
(12)

provided χ0 = 0.
As a result, the Laplace transform of X(t) is the one of a compound Poisson process

〈e−λX(t)〉 = exp − t

θ
(1 − f̂χ(λ)). (13)

The standard integer-valued Poisson process, say P(t), is obtained while assuming the
degenerate form χ := η = 1 of the jump amplitude in this last expression:

〈e−λP (t)〉 := exp − t

θ
(1 − e−λ). (14)

2.3. Compound counting

Note that the pure elementary counting renewal process may be recovered from χ0 = 1 and
χ = 1 which states that the initial condition of the counting process is one, with a degenerate
magnitude χ = η = 1 which takes the value one when an event occurs. We shall call
�N(t, λ) := 〈e−λN(t)〉, λ � 0, so that in this case (11) reads

�̂N(p, λ) = (1 − f̂τ (p))e−λ

p(1 − f̂τ (p)e−λ)
(15)



On Linnik’s continuous-time random walks 2637

provided f̂τ (p)e−λ < 1. Thus the equation f̂τ (p) = exp λ is the location of the poles of
�̂N(p, λ).

If the increment χ (initial condition χ0) now takes random non-degenerate integral values,
we shall call it η (respectively η0). If this is so, the cumulative process X(t) takes itself integral
values (and we shall therefore call it N(t) to avoid confusion); it is then a compound recurrent
counting renewal process: in this model, at renewal timesTn, n � 1, it is assumed that a random
number η� 1 of events may occur simultaneously. With �N(t, λ) := 〈e−λN(t)〉, λ � 0, we
then get

�̂N(p, λ) = (1 − f̂τ (p))f̂η0
(λ)

p(1 − f̂τ (p)f̂η(λ))
(16)

where f̂η(λ) := 〈e−λη〉 is the Laplace transform of the discrete jumps’ distribution. The
triptych (f̂η0

(λ), f̂η(λ), f̂τ (p)) will be called the space–time characteristics of the process
N(t), t � 0 as they completely determine its law.

2.4. Cumulative magnitude process driven by a compound counting process

Let N(t) be a compound counting renewal process, whose characteristics are given by
(f̂η0

(λ) = f̂η(λ), f̂τ (p)). Let (χm,m � 0) be an IID sequence. The process

X(t) =
N(t)∑
m=0

χm (17)

is called a cumulative magnitude process driven by N(t).
We then have the result of the following proposition.

Proposition 1. Let f̂χ(λ) := 〈e−λχ〉. Let f̂X(λ) = f̂η(− log f̂χ(λ)) be the Laplace transform
of the random sum

X =
η∑

m=0

χm. (18)

Then, the process X(t) is a compound renewal process with space–time characteristics

f̂X0(λ) = f̂X(λ) = f̂η(− log f̂χ(λ)) f̂τ (p) (19)

in such a way that X(t) = ∑N(t)
m=0 Xm and N(t) = ∑N(t)

m=0 ηm.

Proof. We have

〈e−λX(t)〉 =
∑
n�0

f̂χ(λ)
n Pr(N(t) = n) = �N(t,− log f̂χ(λ)). (20)

Thus

�̂X(p, λ) = �̂N(p,− log f̂χ(λ)). (21)

From (11) and (16), the result follows. �

From this result, it follows that a cumulative magnitude process driven by a compound
counting renewal process boils down to a standard cumulative magnitude process driven by the
elementary counting renewal process, with amplitude properly readjusted along (18), which
is fair enough.
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3. Inverse processes

In this section, we focus on the notion of the inverse of a process which is a central one for
our purpose; special attention is paid to situations where the original process to be inverted
has stationary independent increments, and non-decreasing sample paths, i.e. is a subordinator
(see [1,26, p 366]). We supply a few examples of interest in preparation for the considerations
on Linnik and inverse-Linnik subordinators to be made in the next section.

3.1. Generalities on inverse processes

Let X(t), t � 0 be a real-valued stochastic process, such that X(0) = 0. With x � 0, let

T (x) := inf(t > 0 : X(t) > x). (22)

This process has non-decreasing sample paths and so is said to be a subordinator. Actually,
T (x) is the generalized inverse of the extremal process

X∗(t) := max
s�t

X(s) (23)

which has also non-decreasing sample paths. Note that if X(t) is itself non-decreasing sample-
paths, then the two processes X(t) and X∗(t) share the same sample paths. In this case, T (x)

is directly the inverse of X(t).
The result of the following proposition, relating the Laplace functional of X∗(t) and T (x),

holds.

Proposition 2. Let X(t), X∗(t) and T (x) be defined as above. Let �̂X∗(p, λ) stand for the
Laplace transform in time of �X∗(t, λ) := 〈e−λX∗(t)〉 and �̂T (λ, p) stand for the Laplace
transform in space of �T (x, p) := 〈e−pT (x)〉. Then, the formula

λ�̂T (λ, p) + p�̂X∗(p, λ) = 1 (24)

holds.

Proof. To see this, we observe that the events ‘T (x) > t’ and ‘X∗(t) � x’ coincide; thus, we
get the identity∫ +∞

0
e−λx Pr(T (x) > t) dx =

∫ +∞

0
e−λx Pr(X∗(t) � x) dx = 1

λ
〈e−λX∗(t)〉. (25)

Upon taking the Laplace transform in time, and permuting the integrals∫ +∞

0
e−pt dt

∫ +∞

0
e−λx Pr(T (x) > t) dx =

∫ +∞

0
e−λx dx

1

p
[1 − 〈e−pT (x)〉] (26)

= 1

pλ
− 1

p
�̂T (λ, p) = 1

λ
�̂X∗(p, λ). (27)

We thus prove the assertion. �
Let X(t) be a real-valued stochastic process, such that X(0) = 0. Compute the Laplace

functional of T (x). From (24), this is

�̂T (λ, p) = 1

λ
(1 − p�̂X∗(p, λ)). (28)

Upon exchanging the roles of λ and p (that is to say space and time), we get the Laplace
functional of a standard process, say Z(t), in the temporal domain

�̂Z(p, λ) := 1

p
(1 − λ�̂X∗(λ, p)). (29)
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It is such that

�̂Z(p, λ) =
∫ +∞

0
e−pt 〈e−λZ(t)〉 dt (30)

and the process Z(t), t � 0 is said to be the inverse of the process X(t), t � 0.

3.2. Fundamental examples

In this section, we supply some simple and fundamental examples, starting with the simplest
one.

Example 1. Compound Poisson and inverse Poisson subordinators.
Assume X(t) is a compound Poisson subordinator hence with stationary independent

positive increments and non-decreasing sample-paths; then, from (13),

〈e−λX(t)〉 = 〈e−λX∗(t)〉 = e− t
θ
(1−f̂χ(λ)) (31)

with f̂χ(λ) the Laplace–Stieltjes transform of a positive increment random variable (the jump
height), say χ. As a result, X∗(.) = X(.), and

�̂X∗(p, λ) = θ

pθ + 1 − f̂χ(λ)
. (32)

The Laplace functional of the inverse process easily follows from (29). It can be expressed
as

�̂Z(p, λ) = 1

p

(
1 − λ

θ

λθ + 1 − f̂χ(p)

)
= 1 − f̂χ(p)

p(λθ + 1 − f̂χ(p))
. (33)

With f̂ (λ) = 1/(1 + λθ), the Laplace–Stieltjes transform of the exponential distribution,
with mean value θ , this is also

�̂Z(p, λ) = (1 − f̂χ(p))f̂ (λ)

p(1 − f̂χ(p)f̂ (λ))
. (34)

Hence, from (11), it is the Laplace functional of a compound renewal process such that

�̂Z(p, λ) = (1 − f̂τ (p))f̂ζ0
(λ)

p(1 − f̂τ (p)f̂ζ(λ))
(35)

with space–time characteristics

f̂ζ0
(λ) = f̂ζ(λ) = 1

(1 + λθ)
and f̂τ (p) = f̂χ(p) (36)

simply exchanging the roles of space and time.
The inverse of a compound Poisson subordinator is a renewal process which exhibits initial

and subsequent IID exponentially distributed jump-heights ζ0, ζ. The holding time τ between
consecutive jumps has the distribution of the jump-height χ of the original compound Poisson
subordinator.

We now come to a more intricate example.

Example 2. Lévy-stable and inverse-Lévy-stable subordinators.
Assume X(t) is now a standard Lévy-stable subordinator. Then, with δ ∈ (0, 1)

〈e−λX(t)〉 = 〈e−λX∗(t)〉 = e−tλδ

. (37)
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Note from (37) that

X(t)
d= t1/δLδ t � 0 (38)

where Lδ is a standard positive Lévy variable, with

〈e−λLδ 〉 = exp −λδ. (39)

Remark 2. Before discussing the particular status of the inverse-Lévy subordinator, it should
first be emphasized that a Lévy subordinator is a limiting compound Poisson process [10,29].

First recall the identity (which may be checked upon deriving with respect to λ)∫ +∞

0
(1 − e−λx)ρχ(x) dx = λδ with ρχ(x) = δ

�(1 − δ)
x−(1+δ).

Here ρχ(x) dx is a positive Radon exponent measure on (0,+∞), with infinite total mass,
due to the algebraic divergence of its density in the vicinity of zero. As ρχ is not a probability
density, a Lévy subordinator, for which (37) holds, is not stricto sensu a compound Poisson
process (compare with (31)); rather, it can be obtained from a ‘coarse’ compound Poisson
process Xε(t) in the limit ε ↓ 0.

Let indeed ε > 0; consider the compound Poisson process Xε(t), t � 0 defined by an
exponentially distributed holding time with mean θε and with IID positive increments, say χε,
with normalized truncated probability density

fχε (x) = θε · ρχ(x) · 1(x > ε). (40)

We note that this is a Pareto distribution in the heavy-tailed class with tail index δ: jumps with
very large amplitude are very likely to occur in the sample paths of Xε(.).

From (40) the normalization constant is easily obtained. It is

θε = 1

/∫ +∞

ε

ρχ(x) dx = �(1 − δ)εδ

and θε tends to zero as ε tends to zero. Next, we form the quantity 〈e−λXε(t)〉. From (31), with
f̂χε (λ) := 〈e−λχε 〉, it is the Laplace transform of the density fχε

〈e−λXε(t)〉 = e−t/θε(1−f̂χε (λ)).

Now,

1/θε(1 − f̂χε (λ)) =
∫ +∞

ε

(1 − e−λx)ρχ(x) dx →
ε↓0

λδ

which is consistent with (37).
Thus, X(t) defined from (37) is the limiting compound Poisson process Xε(t) as ε ↓ 0

and is indeed a subordinator with IID increments. As a result, X(t) can be obtained from the
renewal process Xε(t) with Pareto-exponential space–time characteristics:

f̂χ0
(λ) = 1 f̂χε (λ) and f̂ε(p) = 1/(1 + pθε)

taking the limit ε ↓ 0. Compound Poisson subordinators exhibit finitely many isolated
jumps on finite-time intervals. This is not the case for Lévy ones: the many jumps with
tiny amplitudes contribute in the limit to a Hölder continuous drift, with Hölder exponents in
the range [0, 1

δ
] [18], as a result of jumps’ clustering. This drift is punctuated with a few very

large Pareto jumps. Globally, from (38), the process drifts to infinity much faster than clock
time t , as a result of the very large jumps which occur.
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Let us now come to the inverse asymmetric Lévy subordinator. Its Laplace functional is,
from (29) and (37),

�̂Z(p, λ) = 1

p

(
1 − λ

1

λ + pδ

)
= 1

p(1 + λp−δ)
. (41)

Hence, as it can easily be checked from (11), example 1 and remark 2, Z(t) as defined
from (41), costitute a limiting renewal process Zε(t) as ε ↓ 0. Here Zε(t) is a renewal process
whose coarse space–time characteristics are given by

f̂ζε (λ) = f̂ζε
0
(λ) = 1

1 + λθε
and f̂τ ε (p) = f̂χε (p) (42)

with f̂χε (p) = 〈e−pχε 〉 the Laplace transform of fχε defined in (40).
The inverse Zε(t) of the compound Poisson subordinator Xε(t) is a renewal process which

exhibits initial and subsequent IID exponential jump-heights ζε
0, ζε with mean θε . The waiting

time τ ε between its consecutive small exponential jumps has the distribution (40) of the jump
amplitude χε of the original compound Poisson subordinator Xε(t).

Finally, Z(t) is obtained as the limiting renewal process Zε(t) as ε ↓ 0. Indeed,

�̂Zε (p, λ) := (1 − f̂τ ε (p))f̂ζε
0
(λ)

p(1 − f̂τ ε (p)f̂ζε (λ))
= 1/θε(1 − f̂χε (p))

p(1/θε(1 − f̂χε (p)) + λ)
→
ε↓0

1

p(1 + λp−δ)
.

Equation (41) characterizes an inverse-Lévy subordinator. Equations (40) and (42)
characterize its coarse version Zε(t), t � 0.

Additional insight into the process Z(.) arises from the well known result [10]

〈e−λZ(t)〉 = φδ(λt
δ) (43)

where

φδ(λ) :=
∑
n�0

1

�(1 + nδ)
(−λ)n (44)

is the Mittag–Leffler function (which reduces to the exponential function if δ ↑ 1). It is also
known from [10] that φδ(λ) is the Laplace–Stieltjes transform of an inverse-Lévy variable Iδ ,
i.e. φδ(λ) = 〈e−λIδ 〉, where Iδ := L−δ

δ . Here, Lδ is the standard Lévy variable (39). Thus,
from (43)

Z(t)
d= t δIδ t � 0 (45)

which should be compared with (38) for the original process. An inverse-Lévy subordinator
exhibits a non-decreasing Hölder continuous drift, punctuated with large periods of time
(stages) over which it remains constant. Globally, from (45), it drifts to infinity much slower
than time t , as a result of the very large stages of its sample paths.

Example 3. Gamma and inverse-gamma processes.
Assume X(t) is a standard ID gamma subordinator. This means, with γ, θ > 0

〈e−λX(t)〉 = 〈e−λX∗(t)〉 = (1 + λθ)−γ t = e−γ t log(1+λθ). (46)

Recall that (1 + λθ)−γ is the Laplace transform of a gamma probability density function,
which is known [25] to be ID. Besides 〈X(t)〉 = γ θt and this process drifts to infinity like
clock time.

Remark 3. Just like Lévy subordinators, a gamma subordinator is a limiting compound
Poisson process.
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First, observe that

γ log(1 + λθ) =
∫ +∞

0
(1 − e−λx)ρχ(x) dx with ρχ(x) = γ

x
e−x/θ .

Note that the exponent measure also concentrates around zero, although to a smaller extent;
besides it shows exponential decay at infinity.

Considering the compound Poisson process Xε(t), t � 0 defined by an exponential
interarrival time with mean θε and with IID positive increments, say χε, with common
probability density given this time by

fχε (x) = θε · γ
x

e−x/θ · 1(x > ε) (47)

the ε-limiting construction of X(t) suggested in remark 2 can be applied, using this jump
distribution instead of the one in (40).

Similarly, the inverse-gamma process Z(t) with Laplace functional

�̂Z(p, λ) = 1

p

(
1 − λ

1

λ + γ log(1 + θp)

)
= 1

p(1 + λ/[γ log(1 + θp)])
(48)

is therefore a limiting renewal process Zε(t) as ε ↓ 0. Here Zε(t) is a coarse renewal process
with space–time characteristics

f̂ζε (λ) = f̂ζε
0
(λ) = 1

1 + λθε
and f̂τ ε (p) = f̂χε (p) (49)

with f̂χε (p) = 〈e−pχε 〉 the Laplace transform of the truncated density function fχε defined
in (47).

Equation (48) characterizes an inverse-gamma subordinator. Equations (47) and (49)
characterize its coarse version Zε(t), t � 0.

Example 4. Composing subordinators. Finally, we supply a last example which shall prove
useful in what follows. The idea is to compose subordinators (to obtain a subordinator).

Consider two independent subordinators, say X(t), Z1(t), t � 0. Assume that X(t) is a
Lévy subordinator with parameter α ∈ (0, 1) (see (37) with α replacing δ) and that Z1(t) is an
inverse-Lévy subordinator with parameter δ (given by (43)).

Next, consider the compound subordinator

Z(t) := X(Z1(t)).

We have, from Bayes’ formula and from (37) and (43)

〈e−λZ(t)〉 =
∫ +∞

0
〈e−λX(s)〉fZ1(t)(s) ds = 〈e−λδZ1(t)〉 = φδ(λ

αtδ). (50)

From (41) and (43), the Laplace functional of Z(t) is thus

�̂Z(p, λ) = 1

p(1 + λαp−δ)
. (51)

Hence, from the observations made about Lévy and inverse-Lévy subordinators in
example 2, it is the ε-limit Laplace functional of a compound renewal process Zε(t) with
local space–time characteristics

f̂ζε
0
(λ) = f̂ζε (λ) = 1

1 + θελα
and f̂τ ε (p) = f̂χε (p).

Here f̂χε (p) = 〈e−pχε 〉 is the Laplace transform of fχε defined as in the Lévy model (40).
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Note that the jump height satisfies ζε d= [θε]1/αζ, where ζ is a Mittag–Leffler variable,
such that Pr(ζ > x) = φα(x

α). Indeed, the Laplace transform f̂ζ(λ) := 〈e−λζ〉 of such
Mittag–Leffler variables are given by the formula [10]

f̂ζ(λ) = 1

1 + λα
.

From (38) and (45), we then have

Z(t)
d= t δ/αLδ,α t � 0 (52)

where

Lδ,α := Lα/(Lδ)
δ/α = (Iδ/Iα)

1/α (53)

with (Lα, Lδ), (respectively, (Iα, Iδ)) two independent Lévy (respectively, inverse-Lévy)
variables with respective parameters α and δ.

We shall call the variableLδ,α a mixed inverse-Lévy variable, for obvious reasons. (see [17]
for some use of the process (52) in the context of fractional Lévy motions). For such compound
subordinators, we observe a competition between the very large jumps which occur in the α–
Lévy subordinator and the very long stages of the inverse-δ–Lévy subordinator.

4. Linnik and inverse-Linnik subordinators

As we wish to pay special attention to Linnik processes, this example deserves its own section.
Consider two independent subordinators with stationary independent increments, say

X1(t), X2(t), t � 0. Assume X1(t) is a Lévy subordinator and that X2(t) a gamma
subordinator. Next, consider the compound subordinator

X(t) := X1(X2(t)).

We have, from Bayes’ formula and from (37) and (46)

〈e−λX(t)〉 =
∫ +∞

0
〈e−λX1(s)〉fX2(t)(s) ds = 〈e−λδX2(t)〉 = (1 + θλδ)−γ t .

If θ = 1
γ

, X(t), t � 0 is said to be a Linnik subordinator. Hence, for such processes, with
γ > 0 and δ ∈ (0, 1)

〈e−λX(t)〉 = 〈e−λX∗(t)〉 = (1 + λδ/γ )−γ t = e−γ t log(1+λδ/γ ). (54)

Processes with such distributions are known to be with stationary independent increments,
as a result of the ID character of the Linnik distribution defined by its Laplace–Stieltjes–Cole–
Cole transform [35]

〈e−λX(1)〉 = (1 + λδ/γ )−γ . (55)

In fact, Linnik distributions belong to the class of SD distributions (see below) which is a
proper subclass of ID ones.

These distributions were first introduced in [24, p 63] and then developed in the present
form by [7,8]. Recent additional work on this topic may be found in [2–4], in a static context.

Note that as γ = 1, X(t), t � 0 is a Mittag–Leffler process [28] and that as γ ↑ +∞,
X(t), t � 0, coincides with a Lévy-stable subordinator. This class of processes is thus quite
general and fundamental in many respects. Furthermore, for large times, the median value
mX(t) of X(t), defined by Pr(X(t) � mX(t)) = 1

2 is easily shown, from (54), to grow like t1/δ:
this process also drifts to infinity much faster than clock time t .
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Remark 4. Just like Lévy (and gamma) subordinators, a Linnik subordinator is a limiting
compound Poisson process. From the ID character of the Linnik distribution and from the fact
that this compound process is a subordinator

γ log(1 + λδ/γ ) =
∫ +∞

0
(1 − e−λx)ρχ(x) dx (56)

for some positive Radon measure ρχ(x) dx. The function ρχ(x) may next be identified to be

ρχ(x) = δγ

x
φδ(γ xδ)

in terms of the Mittag–Leffler function φδ defined in (44). Indeed, upon deriving
expression (56) with respect to λ, we get∫ +∞

0
e−λxφδ(γ xδ) dx = 1

λ(1 + γ λ−δ)

which is consistent with (41) and (43). Note from this expression that φδ(γ xδ) ∼ x−δ for large
x, so that ρχ(x) ∼ x−(δ+1) is again heavy-tailed with tail index δ ∈ (0, 1): very large jumps
in the Lévy subordinator X1(t) are still visible in the compound Linnik subordinator X(t). In
the vicinity of x = 0, the exponent measure behaves like ρχ(x) ∼ 1/x, just like the one of the
gamma subordinator.

Considering the compound Poisson process Xε(t), t � 0 defined by an exponential
interarrival time with mean θε and with IID positive increments, say χε, with common truncated
heavy-tailed density given this time by

fχε (x) = θε · δγ
x

φδ(γ xδ) · 1(x > ε) (57)

the ε-limiting construction of X(t) suggested in remark 2 applies, using distribution (57)
instead of the one (40) used in the Lévy case.

Turning now to the inverse-Linnik subordinator, it is characterized by its Laplace functional

�̂Z(p, λ) = 1

p

(
1 − λ

1

λ + γ log(1 + pδ/γ )

)
= 1

p(1 + λ/[γ log(1 + pδ/γ )])
. (58)

Again, from (11), it is the ε-limit of a process Zε(t) whose Laplace functional is the one
of a compound renewal process with space–time characteristics

f̂ζε
0
(λ) = f̂ζε (λ) = 1

1 + λθε
and f̂τ ε (p) = f̂χε (p). (59)

Here, f̂χε (p) the Laplace transform of fχε (x) given in (57 ) in terms of the Mittag–Leffler
function. The holding times between consecutive exponential jumps are long (events are rare).

4.1. Discrete inverse Cox–Linnik processes

We now come to a discrete version of the inverse-Linnik process just defined.

4.1.1. Discrete inverses of compound Poisson processes. First, let X(t) be a compound
Poisson subordinator with positive stationary independent increments. Let Z(t) be its inverse
subordinator defined in example 1. It is characterized by its Laplace functional (11) with
(f̂ζ0

(λ) = f̂ζ(λ), f̂τ (p)) given by the previous formulae (36). Let P(t), t � 0 be a Poisson
process with intensity 1

a
> 0, independent of Z(t). We call the integer-valued process

N(t) := P(Z(t)) t � 0 (60)
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the discrete inverse process of X(.). Thus, a discrete inverse process, also called a Cox process,
is a Poisson process sampled in independent inverse time Z(t).

For such processes, we have the following proposition.

Proposition 3. A discrete inverse process is a counting compound renewal process. The time
separating consecutive increments has the Laplace–Stieltjes transform f̂τ (p), whereas the
discrete-valued amplitude of the jumps has the Laplace–Stieltjes transform

f̂η(λ) := 〈e−λη〉 = f̂ζ

(
1 − e−λ

a

)
. (61)

Proof. From Bayes’ formula, with fZ(t)(s) the density of Z(t) at s > 0, (60) yields

〈e−λN(t)〉 =
∫ +∞

0
e− s

a
(1−e−λ)fZ(t)(s) ds = 〈e− 1−e−λ

a
Z(t)〉. (62)

Thus, taking the Laplace transform in time, and with as usual

�̂N(p, λ) :=
∫ +∞

0
e−pt 〈e−λN(t)〉 dt (63)

we get

�̂N(p, λ) = �̂Z

(
p,

1 − e−λ

a

)
. (64)

From (11), with (f̂ζ0
(λ), f̂ζ(λ), f̂τ (p)) the space–time characteristics of Z(.), we get

�̂N(p, λ) = (1 − f̂τ (p))f̂η0
(λ)

p(1 − f̂τ (p)f̂η(λ))
(65)

with f̂η0
(λ) = f̂η(λ) = f̂ζ(

1−e−λ

a
). �

Remark 5. The process N(t) may thus be obtained in the following way:

N(t) =
N(t)∑
m=0

ηm

where N(t) is the elementary counting renewal process with inter-arrival times distributed
according to f̂τ (p) and with (ηm,m � 0) an IID sequence with common Laplace transform
f̂η(λ) = f̂ζ(

1−e−λ

a
) defined in terms of f̂ζ(λ). In this interpretation, at random times Tn, n � 1,

a random number of events drawn from η simultaneously occur.

4.1.2. Discrete inverse Cox–Linnik processes. We wish here to define a discrete inverse-
Cox–Linnik process N(.). To do this, we shall first use the coarse process Zε(.) (defined
by (57) and (59)), the inverse of the coarse Linnik process Xε(.) in the compound Poisson
class. The discrete inverse, say Nε(.) of the coarse Linnik process Xε(.) may then be derived
from the previous section. Finally, the full discrete inverse-Cox–Linnik process N(.) will be
defined as: N(.) = lim

ε↓0
Nε(.).

At fixed ε > 0, the time separating consecutive increments of Nε(.) has the Laplace–
Stieltjes transform

f̂τ ε (p) = f̂χε (p) (66)
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with f̂χε (p) the Laplace transform of fχε (x) given in (57) in terms of the Mittag–Leffler
function.

The discrete-valued amplitude of the jumps has the geometric Laplace–Stieltjes transform

f̂ηε (λ) = f̂ζε

(
1 − e−λ

a

)
with f̂ζε (λ) = 1

1 + λθε
. (67)

In other words, ηε is geometrically distributed and with pε := θε

a+θε

Pr(ηε = n) = (1 − pε)p
n
ε n � 0. (68)

In addition, f̂ ε
η0
(λ) = f̂ ε

η (λ) and the Laplace functional of the limiting process N(.) is

�̂N(p, λ) = 1

p(1 + (1 − e−λ)/[aγ log(1 + pδ/γ )])
. (69)

4.2. Self-decomposability

We supply here some notions on the self-decomposability property advocated above of Linnik
distributions.

A positive random variable X is said to be SD if it can be additively (self-) decomposed
according to

X
d= c · X1 + R0 (70)

where c > 0 is a scale parameter. Also, X and X1 share the same distribution and X1 is
independent of the remaining (positive) random variable R0.

Then, we have

Proposition 4. A positive random variable X is SD if, with f̂X(λ) := 〈e−λX〉 and c > 0, there
is a (probability) Laplace–Stieltjes transform f̂c(λ) such that

f̂X(λ) = f̂X(cλ) · f̂c(λ). (71)

If X is SD, with Rm
d= cmR0, m � 0 independent random variables obtained from R0

through the scaling
n∑

m=0

Rm
d→

n↑∞
X. (72)

Proof. Observing the following convergence in law to zero:

cnX
d→

n↑+∞
0

we get the result upon iterating the above decomposition of X. Note that

f̂m(λ) := 〈e−λRm〉 = f̂c(c
mλ) = f̂X(c

mλ)

f̂X(cm+1λ)
.

�
Thus, SD variables derive their importance from the fact that they are limit distributions

for sums of independent random variables, through scaling iteratively. They are known [25]
to be a sub-class of ID variables X for which

− log f̂X(λ)

has a completely monotone λ-derivative [10].
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Let now N be an integer-valued random variable. There exists a discrete version of the
notion of self-decomposability [33]. Some accounts on the sub-class of discrete stable random
variables may also be found here and in [5].

The probability generating function (PGF) ϕ(u) := 〈uN 〉 is the one of a discrete SD
variable N if for any p ∈ (0, 1), there is a PGF ϕp(u) such that

ϕ(u) = ϕ(1 − p(1 − u)) · ϕp(u). (73)

This is the standard (discrete) version of self-decomposability of probability distributions
on the integers, through a functional equation. We then have the obvious characterization
property given in the following proposition.

Proposition 5. It follows from the definition of SD distributions that if ϕ(u) is the PGF of the
random variable N , then N can be additively decomposed as

N
d= p ◦ N1 + R0 (74)

where the p-thinned random variable p ◦ N , for p ∈ (0, 1], is defined to be

p ◦ N :=
N∑

m=1

Bm (75)

with (Bm,m � 1) IID Bernoulli variables in such a way that P(B1 = 1) = p, independent
of N . Also, N and N1 have the same distribution and p ◦ N1 is independent of the remaining
random variable R0.

Observing that for any two real numbers p1 and p2 of (0, 1], p1 ◦ (p2 ◦N) = (p1 ·p2)◦N ,
and that the following convergence in law to zero holds:

pn ◦ N
d→

n↑+∞
0

we obtain, iterating the above decomposition
n∑

m=0

Rm
d→

n↑+∞
N

where Rm

L≡ pm ◦ R0, m � 0, are independent random variables with PGF

ϕRm
(u) = ϕR0(1 − pm(1 − u)).

Here pm are scaling parameters. Discrete SD random variables are thus also obtained as
limit distributions for sums of independent discrete random variables. It can be shown that the
SD subclass of ID distributions only yields unimodal distributions, with mode possibly at the
origin.

Finally, the connection between positive and discrete self-decomposability relies on the
following proposition.

Proposition 6. Let P(t), t � 0 be a standard Poisson process. If X is a positive SD
distribution, the discrete variable N defined by

P(X) = N (76)

is discrete SD.

Proof. This goes through the observation employed in the design of discrete processes from
continuous ones (section 4.1) that the Laplace–Stieltjes transform f̂N (λ) := ϕ(e−λ), λ � 0,
of N is related to the Laplace–Stieltjes transform f̂X(λ) of X by

f̂N (λ) = f̂X(1 − e−λ).

�
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5. Asymptotics of the cumulative partial sums of a Linnik sequence

Let (ξn, n � 0) be an IID sequence of positive magnitude. In this section, we are concerned
with the large-time behaviour of the cumulated variable X(t), where

X(t) =
N(t)∑
m=0

ξm (77)

with N(t) a discrete Linnik process, defined by (69).
For such processes, from (21) the Laplace functional is given by

�̂X(p, λ) = �̂N(p,− log f̂ξ(λ)) (78)

with �̂N(p, λ) given by (69).
It happens that the asymptotics of this variable is strongly dependent on the finiteness or

not of the mean value µ := 〈ξ〉 for the amplitude. We shall therefore distinguish these two
cases.

First we consider the case µ < +∞.

Proposition 7. If µ < +∞, we have (see also [31, p 27]) the convergence in distribution to
an inverse-Lévy variable

a

tδ

X(t)

µ

d→
t↑+∞

Iδ. (79)

Proof. From the definition (77), the Laplace–Stieltjes functional of X(t) results from the one
of N(t) and

�̂X(p, λ) = �̂N(p, λ = − log f̂ξ(λ)). (80)

From (69), it is

�̂X(p, λ) = 1

p(1 + (1 − f̂ξ(λ))/[aγ log(1 + pδ/γ )])
. (81)

Thus, under the hypothesis µ < +∞, we have f̂ξ(λ) ∼
λ↓0

1 − µλ, and

�̂X(p, λ) ∼
(p,λ)↓0

1

p(1 + µ

a
λp−δ)

(82)

which from (41) and (45) is the Laplace functional of the variable µ

a
tδIδ . �

From (79), as δ < 1, the cumulated variable X(t) grows slower than time t , as a result
of the long stages in the inverse-Linnik process: the time between consecutive events may be
long and this property slows the speed of growth of X(t).

Remark 6. This result actually contains two additional obvious results as particular cases.
They concern respectively the number of peaks N(t) in a Linnik sequence, for which

a

tδ
N(t)

d→
t↑+∞

Iδ (83)

and the number of peaks over the threshold x > 0 (POT), say Nx(t) := ∑N(t)
m=1 1(ξm > x), for

which the following is easily shown to hold:

a

tδ

Nx(t)

Pr(ξ > x)

d→
t↑+∞

Iδ. (84)
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This variable is of interest for the computation of order statistics ξ1:n � · · · � ξn:n,
observing that, with k � 1 integer, the events ‘Nx(t) > k’ and ‘ξk:N(t) � x’ coincide. Here

Nx(t) := ∑N(t)
m=1 1(ξm � x) = N(t) − Nx(t). If the number of peaks under the threshold is

larger than k, then the amplitude of the kth ordered peak cannot exceed this threshold.

Next we consider the case µ = +∞.
We now come to the situation where the expected individual magnitude has infinite value

as a result of heavy-tailedness of ξ

f̂ξ(λ) ∼
λ↓0

1 − cαλ
α with cα > 0 and α ∈ (0, 1). (85)

In this case the following proposition holds.

Proposition 8. If µ = +∞, in the previous sense, the following convergence in distribution
holds (see also [20, p 27])

1

κα · t δ/α X(t)
d→

t↑+∞
Lδ,α. (86)

Here the random variable Lδ,α is the mixed inverse-Lévy variable which appears in (52).
The constant κα which appears may be expressed as

κα =
[cα
a

]1/α
(87)

in terms of the constants already encountered.

Proof. Under our hypotheses (85), it results from (81), that

�̂X(p, λ) ∼
(λ,p)↓0

1

p(1 + cα
a
λαp−δ)

. (88)

Now, from (50)–(52), this is the Laplace functional of the random variable Lδ,α(t) =
καt

δ/αLδ,α , (see also [17]), proving the result (86). �

From this result, we may now observe a competition between the heavy-tailed character
of the magnitude ξ which forces the cumulated variable X(t) to grow faster than time t and
the heavy-tailed character of the inter-arrival times between consecutive events which slows
its growth. A critical situation is when δ = α, in which case, X(t) grows linearly with time t

and the two effects exactly compensate. If this is the case, (86) reduces to

1

κα · t X(t)
d→

t↑+∞
Lα,α (89)

where Lα,α is the ratio of two independent Lévy variables with the same parameter α.

6. Time to failure for Linnik sequences

We finally address the ‘time to failure’ problem for Linnik sequences announced in the
introduction of this paper. Indeed, in some instances, the cumulative magnitude process is
irrelevant; rather, an ‘extremal’ process is required. For example, if (ξn, n � 0) are the tides
amplitudes’ sequence which a dyke is to contain, it is of concrete interest to have some insight
into the waiting time before some tides’ height will exceed the dam’s height itself, provoking
irreversible damage. This approach may then be used to design the dam’s height so as to
guarantee, with a good confidence interval, that this failure time will be long enough.
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6.1. Time to failure as an extreme values problem

Let (ξn, n � 0) be an IID sequence of random positive magnitude. A sequence
(ξ0, ξ1, . . . , ξN(t)) where N(t) is a discrete Linnik process will be called a Linnik sequence
of magnitude events.

For such sequences, an obvious question of interest is: how long should one wait before
the first event of magnitude greater than a given threshold is observed?

To that purpose, we shall compute the ‘time to failure’ in a renewal Linnik sequence,
which is defined as

T (x) := inf(t > 0 : ξN(t) > x) (90)

i.e. which is the first time at which some magnitude exceeds the level x > 0. Our result is
given in the following proposition.

Proposition 9. Let N(t) be a discrete inverse-Linnik process. Let (ξn, n � 0) be a sequence
of IID random variables with common probability distribution Pr(ξ � x). Then the Laplace
transform of T (x) is

〈e−pT (x)〉 = 1

1 + [aγ log(1 + pδ/γ )]/Pr(ξ > x)

which is explicit.

Proof. This problem is one of extreme value theory [9]. To see this, set X(t) = ξN(t), t � 0.
From (90) and from the generalities on inverse processes (section 3.1), the ‘time to failure’
process T (x), x � 0 is the inverse of the extremal process X∗(t) := max

s�t
X(s), which exhibits

non-decreasing sample paths. Here, this extremal process is

X∗(t) = max(ξ0, ξ1, . . . , ξN(t)).

Therefore, we shall first express the distribution function for the variable
max(ξ0, ξ1, . . . , ξN(t)), where (ξn, n � 0) is the IID random sequence of amplitudes in a
compound renewal process. We have, for positive x

Pr(max(ξ0, . . . , ξN(t)) � x) =
∑
n�0

Pr(max(ξ0, . . . , ξn) � x)Pr(N(t) = n)

=
∑
n�0

[Pr(ξ � x)]n Pr(N(t) = n) = �N(t,− log Pr(ξ � x)) (91)

from the definition of function �N(t, λ).
Now, the event ‘max(ξ0, ξ1, . . . , ξN(t)) � x’ obviously coincides with the event ‘T (x) >

t’ so that (91) gives the probability distribution of T (x). In other words, using (64)∫ +∞

0
e−pt Pr(T (x) > t) dt = �̂N(p,− log Pr(ξ � x)) = �̂Z

(
p,

Pr(ξ > x)

a

)
. (92)

Here, �̂Z(p, λ) is the Laplace functional of an inverse-Linnik subordinator given by (58).
Now ∫ +∞

0
e−pt Pr(T (x) > t) dt = 1

p
(1 − 〈e−pT (x)〉) (93)

so that, from (58)

〈e−pT (x)〉 = 1 − p�̂Z

(
p,

Pr(ξ > x)

a

)
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= 1 − 1

(1 + Pr(ξ > x)/[aγ log(1 + pδ/γ )])

= 1

1 + [aγ log(1 + pδ/γ )]/Pr(ξ > x)
. (94)

We thus proved the assertion. �

Remark 7. If x = mξ is the median value for ξ defined by Pr(ξ � mξ) = 1
2 then

〈e−pT (mξ )〉 = 1

1 + 2[aγ log(1 + pδ/γ )]
. (95)

6.2. Limit law for large threshold values

In some applications, one is interested in the first time by which some amplitude exceeds the
level x, where x is itself assumed to be ‘large’. Large here means that Pr(ξ > x) is close to
zero, so that crossing the threshold x is very unlikely. Let us therefore discuss the asymptotics
of T (x) for large x > 0.

Proposition 10. The following convergence in distribution holds:

[Pr(ξ > x)/a]1/δT (x)
d→

x↑+∞
Mδ (96)

where

〈e−qMδ 〉 = 1

1 + qδ
q � 0. (97)

Thus, the limit variable Mδ is a Mittag–Leffler variable

Pr(Mδ > x) = φδ(x
δ) (98)

already encountered.

Proof. As x ↑ +∞, we have Pr(ξ > x) ↓ 0. Thus,

〈e−q[Pr(ξ>x)/a]1/δT (x)〉
= 1

1 + [aγ log(1 + Pr(ξ > x)qδ/(aγ ))]/Pr(ξ > x)
→

x↑+∞
1

1 + qδ

as required. �
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